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Boundary-layer velocity profiles in a 
swirling convergent flow field 
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Velocity distributions within the boundary layer of a swirling flow of incom- 
pressible fluid in a convergent conical nozzle have been investigated. Theoretical 
calculations with boundary conditions more appropriate to physically existent 
situations discounted the existence of ‘super-velocities ’ within the boundary 
layer. Parallel experimental investigations demonstrated an interdependence 
of core and boundary-layer flows which precluded the maintenance of the flow 
conditions required by the analysis. 

1. Introduction 
Velocity proilles in the laminar boundary layer of a swirling convergent flow 

field were first investigated by Taylor (1950). He considered the case of a domi- 
nant tangential flow superimposed upon a secondary axial flow in a conical 
nozzle. Applying the Pohlhausen method to the momentum integral equations 
of the problem, Taylor concluded that operating conditions could arise whereby 
most of the nozzle discharge was caused by the flow within the boundary layer at  
the wall of the swirl chamber. Binnie & Harris (1950) extended Taylor’s approach 
to include radial as well as swirling flow in a conical Venturi geometry. 

Wilks (1968) re-examined the laminar boundarilayer in a swirling nozzle flow. 
He considered the flow field to be composed of a central inviscid core flow plus 
a thin boundary-layer flow at the walls of the swirl chamber. The inviscid core 
contained two flow Gomponents: a uniform axial flow and a free vortex flow 
aligned concentrically with the centre-line of the nozzle. Using Weighardt’s two- 
parameter integral technique, Wilks demonstrated the possibility of ‘ super- 
velocities ’, i.e. velocities greater than free-stream velocities, existing within the 
boundary layer. 

In  this paper, an approach analogous to that of Wilks was used. Here, however, 
the effect of boundary-layer growth upon the tangential and axial velocities in 
the free-stream flow was taken into consideration. As a result, no ‘super-velo- 
cities ’ were found to exist within the boundary layer of the swirling conical nozzle 
flow investigated. Furthermore, experimental results proved that rotational 
effects (not boundary-layer effects) were of paramount importance in the con- 
vergent swirling flow configuration tested. 
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2. Previous theory 
Following Wiks, a curvilinear co-ordinate system is defined with the x axis 

along the wall and the x axis perpendicular to the wall of the nozzle. The shape of 
the nozzle is determined by the surface of revolution of an arbitrary curve r(x) 
(see figure 1 ) . 

I '( s) 

FIGURE 1. Co-ordinate system. 

The momentum integral equations of the problem are 

with boundary conditions 

Distances in the above equations are normalized by defining n = z/S and s = x/c ,  
where 6 is the local boundary-layer thickness and c is the distance along the gener- 
ator of the nozzle t o  its apex. 

To obtain a solution of the integral momentum equations, the two-parameter 
method of Weighardt involving an eleventh-degree polynomial is used. Applying 
both parameters to the axial profile in the boundary layer (assuming that the 
tangential profile is not altered significantly with downstream distance s) yields 

UlU =f1(n)+Lfz(n)  +L2f3(n), 

where f l(n) = 1 - (1  - n)8 (1 + 8n + 3Gn2 + 120n), 
f2(n) = 1 - n)s n( 1 + 8n + 36n2), 
f3(n) = - (1  - n)* n2( 1 + 8n). 

( 3 )  
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(4) 

Evaluation of the axial velocity profile at the wall leads to physical connota- 
tions for the shape factors L, and L,. L, involves wall shear stress, whereas L2 
reflects axial pressure gradient behaviour : 

From the boundary conditions, the polynomial corresponding to the swirl profile 
is 

v/V = g(n) = 2n-2n3+n4. 

Following Wilks, coefficients A,, A,, A ,  and A4 (ratios of characteristic thick- 
nesses) are defined (see appendix A) and the term 

(6) G = ( US/V) (S/C) 
is introduced, giving 

r' U' 

(7) 

As a method of simplifying the solution, a basically linear relationship is 
assumed to exist between the momentum thickness a,, and the boundary-layer 
thickness 6 and between the mixed momentum thickness 822U and the boundary- 
layer thickness. The above equations are then combined with the definitions of 
G and its derivative to give the following relationships: 

Finally an iterative procedure is used to solve the governing equations for 
various values of downstream distance s. 

Hornstra (1970) developed a modification of this theory to accommodate an 
initial non-zero boundary-layer thickness. He then solved the resulting equations 
for various values of the swirl factor ( K  = V,/U,) and initial boundary-layer thick- 
ness. The results shown in figures 2 and 3 indicate that the 'super-velocity' 
values produced by these formulations increase dramatically as both the swirl 
factor and downstream distance increase. 
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FIGURE 2.  Variations in profile with K. FIGURE 3. Variations in profile with 
X = 0.1, G(0) = 0. (a) K = 0, ( 6 )  K = 1, 2. K = 4, G(0) = 0.52 (a) z = 0, 
(c) K = 2, (d )  K = 3, ( e )  K = 4. (5) x = 0.05, (c )  x = 0.10, (d) z = 0.15, 

( e )  z = 0.20. 

3. Present theory 
Wilks assumed that the tangential velocity at  the outer edge of the boundary 

layer could be described as V = A/r ,  where A is a swirl constant. This assumption 
is only appropriate if the boundary-layer thickness is small compared to the value 
of r .  Yet Wilks’s numerical solution led to  a boundary-layer growth of the same 
order of magnitude as the radius for air flow in a conical nozzle of inlet radius 
of 1 in. with an initial axial velocity of 1 ftls. 

For a boundary-layer growth of such magnitude, it is to be observed that 
tangential velocity wouId reach free-stream value at  the boundary-layer-core- 
flow interface. Thus, to  describe the behaviour of this convergent swirling flow 
field correctly, the tangential flow distribution must realize this consequence of 
boundary-layer growth. A free-stream tangential velocity profile which would 
adequately account for this extensive boundary-layer growth would be one of 
the form V = A/(r - 6). I n  contrast, Wilks’s formulation, viz. V = A / r ,  implies 
that the tangential velocity reaches the free-stream value at  the wall, rather than 
a t  the interface. 

With this in mind, King (1967) produced the first solutions which describe 
the full behaviour of the core in a swirling convergent nozzle flow by likewise 
changing the basis of application of the boundary conditions on tangential flow 
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from the wall of the swirl chamber to  the core-flow-boundary-layer interface. 
Introducing the modified value of V ,  V = A / ( r  - ?I), altered the tangential mo- 
mentum integral equation. By incorporating the definition of a new thickness 

r 
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FIGURE 4. Comparison of theoretical 

6(O)/r, = 0.130. (a) Wilks theory. (b) 
Present theory. Present theory. 

F I a m  5. Comparison of theoretical 

6(0)/ro = 0.130. (a) Wilks theory. (b) 
curves. R = 1, z = 0.1, a(0) = 0-52, curves. K = 1,z = 0-2, a(o) = 0.52, 

0.6 

f 0.6 

0.4 

0 0.2 0.4 0.6 0.8 1.0 0 0.7 0.4 0.6 (1.8 1.0 

n n 

FIGURE 6. Comparison of theoretical 
curves. K = 2, z = 0.1, a(0) = 0.52, 
S(0)/ro = 0.130. (a) Wilks theory. (b) 
Present theory. Present theory. 

FIGURE 7. Comparison of theoretical 
curves. K = 2, x = 0.2, G(0)  = 0.152 
d(0)/ro = 0-130. (a) Wilks theory. (b) 
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coefficient A ,  (appendix B), the modified momentum integral equation for the 
tangential flow thus became 

0 0.2 0.4 0.6 0.8 1.0 
n 

FIGURE 8. Comparison of theoretical curves. K = 4, z = 0.1, G(0) = 0.26, 
6(O)/r,, = 0.065. (a )  Wilks theory. ( b )  Present theory. 

Here, the assumption of a basically linear relationship between characteristic 
thicknesses was used. The terms in the square brackets represent the terms 
added to Wilks’s original tangential-flow momentum integral equation by the 
new assumption, i.e. V = A / ( r  - 6). Also, if the boundary layer is thick enough 
t o  affect the tangential flow it is reasonable to assume that axial flow would like- 
wise be affected by the increased boundary-layer thickness. This added conse- 
quence of boundary-layer growth was accounted for in this analysis by using 
the value of radius minus displacement thickness, rather than radius alone, 
in the axial-flow continuity equation (see appendix B). This alteration of the 
free-stream axial-flow velocity value did not affect the derivation of the axial 
momentum equation. However, final computations involving the axial momen- 
tum equation necessitated the calculation of the axial velocity and its derivative. 
Hence the value of the displacement thickness and its derivative were required. 
Boundary-layer thickness at any point was easily calculated from the value of 
the function G. The calculation of the derivative of displacement thickness 
was not so direct. 

However, since a basically linear relationship was presumed to exist between 
displacement thickness and boundary-layer thickness, the ratio of the displace- 
ment thickness to its derivative was recognized as being equal to the ratio of the 
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boundary-layer thickness to its derivative. With these determinations and with 
equation (1 1) as the swirl momentum integral, the momentum integral equations 
were solved for various normalized values of the initial boundary-layer thickness, 
the initial velocity and the swirl factor. Results are shown in figures 4-8. The 
solutions showed no sign of the existence of super-velocity components. 

4. Experimentation 
An apparatus (figure 9) analogous to that used by Lay (1950) was constructed 

to test the velocity distribution assumed by the theory, viz. a combination of a 
free line vortex and uniform axial flow. To ensure laminar pipe flow of air at speeds 
of at  least 2 ft/s a pipe diameter of 2in. was chosen. The shape of the axial flow 

1-44 in. r - 4  in. 

FIGURE 9. Schematic diagram of experimental apparatus. 

entering the swirl chamber was varied by adjusting the axial position of the 
annular honey comb flow straightener. Air was introduced tangentially into the 
axial flow through a port in the wall of the pipe. The area of the port was variable, 
thus providing fine adjustment of the swirl factor. 

Lay's tests indicated that close to the wall there is a region where tangential 
flow is retarded by viscosity. This region interacts with the boundary layer of the 
axial flow and thus augments the boundary-layer region. To avoid this enhanced 
boundary-layer growth, the outer annular portion of the flow was bled to  the 
atmosphere and thus only a 'flat' inner portion of the swirling flow entered the 
conical nozzle. The position of the 0.77 in. radius nozzle, relative to the end of the 
surrounding l in.  pipe, could be altered in order to vary the amount of flow 
bled off. The nozzle itself (semi-angle 4.4") contained a straight inlet section, 
1 in. in length, which ensured the continuation of proper flow characteristics 
following bleed-off. The distance along the generator of the cone to the apex 
(called c in the analysis) was loin. The truncated cone used in the test apparatus 
extended over 0.35 c. All flow conditions, both axial and tangential, were moni- 
tored with two linearized Disa 55D01 hot-wire anemometers. 

In  all cases tested (see figures lO(a)-(d)) the velocity distribution in the core 
flow changed drastically with downstream distance. Thus, the initial combina- 
tion of a ' flat ' axial profile and a free vortex which extended over a major portion 
of the inlet cross-section was destroyed immediately downstream of the inlet. 
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FIGURE 10. Experimental velocity profiles. K = 0.8, (a)  z = 0, ( b )  z = 0.1, 
( c )  X: = 0.2, ( d )  5 = 0.3. 
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Hence a close experimental check of the theory was impossible to perform. Gener- 
ally, low values of swirl resulted in an axial flow that resembled pipe flow in 
distribution, whereas high values of swirl caused formation of a vortex flow which 
featured high axial velocities at  the core extremities. However, at  no time were 
any ‘super-velocities’ recorded as occurring within the boundary layer of the 
swirl chamber. 

5. Conclusions 
In  considering the swirling flow within the boundary layer of a convergent 

nozzle, Wilks assumed a flow configuration comprised of a core flow consisting 
of a free vortex, combined with a uniform axial flow enveloped by a thin 
boundary layer. Thus core velocities were dependent only upon the geometric 
configuration of the convergent nozzle. A further assumption, viz. that a linear 
relationship existed between the various characteristic thicknesses of the problem, 
led to a solution of the momentum integral equations which featured the appear- 
ance of a super-velocity within the boundary layer of the swirl chamber. In  the 
present analysis, for low velocity air flow (required to maintain laminar flow 
conditions) it was shown theoretically that the assumed boundary-layer growth in 
the swirl chamber was definitely not negligible, being of the order of the radius of 
the swirl chamber under some operating conditions. Thus, incorporating this 
growth into the boundary values of the problem, i.e. by changing the base of 
application of these boundary values, as did King (1967) in a related problem, 
solutions corresponding to the altered momentum integral equations were found 
to exhibit no super-velocity phenomena. 

Furthermore, parallel experiments have demonstrated that, even when one 
attains the initial flow conditions necessitated by the analysis, these conditions 
are subsequently altered in a short distance downstream by the boundary-layer- 
core-flow interplay. Thus, since the major portion of the flow field is changing so 
rapidly in this manner, it does not seem worthwhile to concentrate upon a minor 
portion of the flow field, viz. the boundary layer, in order to analyse the character- 
istics of the flow occurring throughout this swirling domain. 

Finally, in all the theories presentedso far, it was assumed that a basically linear 
relationship exists between the various characteristic thicknesses of the flow. 
Since these thicknesses are functions of the shape factors, which are in turn 
functions of downstream distance [i.e. &(a) and L,(b)], it would seem mandatory 
to extend these analyses without the restrictive assumption of the existence of 
a linear relationship. 
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Appendix A. Previous theory 
From Wilks (1968) 

r i  

U ”  J O  

Integration of the polynomial expressions for the velocity ratios (f and g) in 
the above integrals yields 

D,  = 0.3333 - O.O454L, + 0*0061Lz, 

D ,  = 0.0740 - 0*0149L1- 0*0012L2 - 0 * 0 0 4 5 L ~ -  0*00008L2,+ O*O012L,L2, 

D3 = 0.0846 + 0*0244L, - 0*0029L,, D, = 0.4175. 

For a conic nozzle r (s)  = ro(l - s), and from continuity 

nr: Uo = nr2l7, 

U(s )  = Uo/( 1 - s),, 

V(S) = KUo/( 1 - s). 

Conservation of angular momentum requires that ro Vo = r V = A .  If 

V, = KU,, then V ( s )  = KUo/(l - s) .  

Appendix B. Present theory 
With V = A/(r  - 6) as x + a, the V momentum equation is altered as follows: 

2u dr uV -+-(---)Idz= dr UV d6 dr -$). 
dx r - 6  dx dx  0 

Simplifying, 

Introducing the two-parameter velocity profiles into this expression gives 

with boundary conditions 

g = 0, 9” = 0, on n = 0, 

g = 1 ,  g’=  0, g” = 0, on n = 1 .  
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The corresponding axial momentum equation is 

367 

with boundary conditions 

at  n = 0, 
vu U dU V 2 d r  

f = 1 ,  f ' = O ,  f = O  at n = l .  

Defining coefficients A,, A,, A, and A, as in appendix A, introducing a new term 

and assuming that a nominally linear relatioliship exists between the character- 
istic thicknesses of the problem yields the final forms of the momentum integral 
equations for the problem: 

r' U' 
r G r U  

S' A, r ' ( V ) 2  2;' 
- + p ( Z + A l ) + T  =-+- - A s - + - + - + -  

Taking displacement thickness into consideration, the continuity equation for 
axial flow becomes 

4 . 0  - L(0))Z u, = r(ro(1 - s) - S,,(S)) U(4 ,  
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